Low-Threshold-Voltage MoN/HfAlO/SiON p-MOSFETs With 0.85-nm EOT
M. F. Chang, P. T. Lee, Member, IEEE, and Albert Chin, Senior Member, IEEE

Abstract—By using HfAlO as a capping layer on SiON, MoN/HfAlO/SiON p-MOSFETs show an effective work function of 5.1 eV, a low threshold voltage of −0.1 V, and a peak hole mobility of 80 cm²/(V·s) at small equivalent oxide thickness of 0.85 nm. These self-aligned and gate-first p-MOSFETs processes, with standard ion implantation and 1000 °C rapid thermal annealing, are fully compatible with current very large scale integration fabrication lines.

Index Terms—Capping layer, HfAlO, MoN, p-MOSFETs.

I. INTRODUCTION

HIGH-κ GATE dielectrics and metal gate have been used for CMOSFETs at the 45-nm nodes and beyond [1]–[16], to reduce the dc power consumption from the gate leakage current and continue the gate-oxide scaling. However, the undesired high threshold voltage (Vt) is still one of the major challenges for metal-gate/high-κ CMOSFETs, particularly for the desired low-cost gate-first process. The lack of highly effective work-function (φm-eff) gate metal in the periodic table [8]–[10] makes the p-MOSFET very challenging, which is even worse at small equivalent oxide thickness (EOT) by flatband voltage (Vfb) roll-off effect [6]–[9]. To address these issues, we previously reported the mechanism of Vfb roll-off that was related to interface reaction and interface diffusion of HfO2 and Si channel during high-temperature rapid thermal annealing (RTA) [8]. To reduce the interface reaction, a low-temperature rapid thermal annealing, are fully compatible with current very large scale integration fabrication lines.

II. EXPERIMENTAL PROCEDURE

The 12-in n-type Si wafers with 2 × 10¹⁵ cm⁻³ doping concentration and 4.29-eV substrate work function were used in these experiments. No well implant was used in this study. After standard clean, a thin SiON with 1.5- or 2.1-nm physical thickness was first grown on Si wafers. Then, HfAlO [3] of 1-nm thickness was deposited by physical vapor deposition (PVD) and postdeposition annealing at 500 °C in O2 for 5 min. The composition ratio of Hf and Al in HfAlO is 1 : 1. After that, the metal gate was formed by depositing 50-nm MoN and 200-nm TaN by PVD and patterning. The p⁺ source–drain regions were formed by 35-keV and 5 × 10¹⁵ cm⁻² BF⁺ implantation, followed by 1000 °C RTA activation for 1 s. Finally, the Al was deposited for source–drain and backside contacts. For comparison, MoN/SiON p-MOSFETs were also formed. The fabricated devices were characterized by capacitance–voltage (C–V) and gate-current density–voltage (J–V) measurements. The EOT and Vfb were extracted from the measured C–V data using a CVC simulator [17] that accounts for the quantum–mechanical effect.

III. RESULTS AND DISCUSSION

Fig. 1(a) and (b) shows the C–V and J–V characteristics of MoN/HfAlO/1.5-nm SiON and control MoN/2.1-nm SiON capacitors, respectively. In addition to the positive Vfb using MoN gate on SiON, further −500-mV Vfb shift, smaller EOT of 0.85 nm, and low leakage current of 1.6 × 10⁻¹² A/cm² at 1 V of Vgs − Vth were measured for the MoN/HfAlO/1.5-nm SiON device than the control MoN/2.1-nm SiON sample. Such positive Vfb shift is needed for low Vt operation. The modulation of Vfb is attributed to the interdiffusion and reaction of SiON and HfAlO to form HfAlSiON layer after 1000 °C RTA [13]. The small EOT of 0.85 nm was obtained by considering quantum–mechanical effect [17]. The small EOT is due to optimized interdiffusion of HfAlO/SiON and slight diffusion of MoN gate after 1000 °C RTA, as shown from the SIMS measurements inserted in Fig. 1(b). The φm-eff of 5.1 eV and oxide charge density of 4.5 × 10¹² cm⁻² were obtained from the Vfb–EOT plot inserted in Fig. 1(a). The large φm-eff is suitable for p-MOS applications.

Fig. 2 shows the gate leakage current comparison of MoN/HfAlO/SiON, poly-Si/SiO₂, MoN/2.1-nm SiON, and TaN/HfLaO [8] gate stacks. The small 1.65-nm EOT in the MoN/2.1-nm SiON control device is also due to the slight MoN diffusion. The leakage current of 1.6 × 10⁻¹² A/cm² at 1 V above Vth is approximately four orders of magnitude lower than that of SiO₂ at a 0.85-nm EOT. This low leakage
Fig. 1. (a) C–V and (b) J–V characteristics of the MoN/HfAlO/SiON and MoN/SiON p-MOS capacitors after a 1000 °C RTA. The inserted figure in (a) is a V_{fb}–EOT plot with different HfAlO thickness on constant 1.5-nm SiON. The inserted figure in (b) is the SIMS profile before and after 1000 °C RTA.

Fig. 2. Gate leakage current density comparison of MoN/HfAlO/SiON, poly-Si/SiO$_2$ stack, MoN/2.1-nm SiON, and TaN/HfLaO [8] gate stacks. Current is due to the high-κ HfAlO [3]. Thus, both high ϕ_{m-eff} and low gate dielectric leakage current can be achieved in MoN/HfAlO/SiON MOS capacitors.

In Fig. 3(a) and (b), we show the I_d–V_d and I_d–V_g characteristics of the 0.85-nm EOT MoN/HfAlO/SiON p-MOSFETs. In addition to the well-behaved transistor characteristics, a small V_t of only −0.10 V was measured from the linear I_d–V_g plot—this is due to the high ϕ_{m-eff} of 5.1 eV found from the C–V measurements. Such low V_t meets the lowest scalable value of 4 kT/q for MOSFET at the end of International Technology Roadmap for Semiconductors [16].

The hole mobility as a function of effective electric field for the MoN/HfAlO/SiON p-MOSFETs is shown in Fig. 4, where the data was extracted directly from the measured I_d–V_g curves at small V_d. For comparison, the MoN/2.1-nm SiON p-MOSFET with 1.65-nm EOT is also shown. Good peak hole mobility of 80 cm2/(V·s) and 56 cm2/(V·s) at 0.8 MV/cm were obtained, at a small EOT of 0.85 nm. A slightly degraded mobility is found compared with the MoN/2.1-nm SiON control sample. The reasonably good mobility is due to the optimized SiON between high-κ HfAlO and Si that is critical to prevent mobility degradation [14].

IV. CONCLUSION

We have demonstrated good performance in terms of V_t and mobility at 0.85-nm EOT for HfAlO-capped SiON p-MOSFETs with a high work-function MoN gate. The self-aligned and gate-first MoN/HfAlO/SiON p-MOSFETs...
have the advantages of simple high-temperature processing and compatibility with current very large scale integration lines.

ACKNOWLEDGMENT

The authors would like to thank the support of D.-Y. Chen, L.-G. Yao, C.-H. Chang, C.-Y. Lee, C.-H. Cheng, and C.-H. Yu from the Advanced Module Technology Division, R&D, TSMC.

REFERENCES

